• Tipeee

D'autres articles sur le thème des technologies et de la transformation

DRH, RRH, s’il vous plaît, ne fétichisez pas les chiffres.

DRH, RRH, s’il vous plaît, ne fétichisez pas les chiffres.

Mesdames, Messieurs, DRH ou RRH, s’il vous plaît, veillez à utiliser à bon escient et avec parcimonie les chiffres. Il est incontestable que les chiffres ont une utilité dans vos pratiques professionnelles, notamment dans une visée de contrôle de gestion sociale. Ils permettent une montée en généralité à même d’offrir une vue d’ensemble de certaines dimensions (effectif, nombre d’heures travaillées) ou de certaines dynamiques (absentéisme, effort de formation). Ils rendent également possible une mise en équivalence permettant de pouvoir se comparer à d’autres et d’être comparé en termes de performance sociale. Il n’en demeure pas moins que vous pouvez avoir tendance à les fétichiser, à les sacraliser. Si ce n’est pas quantifié, compté, cela aurait alors moins de valeur.

Lire la suite

Pour une vision stratégique et prospective des données RH

Pour une vision stratégique et prospective des données RH

Marc DELUZET : Chez ENGIE, comment les chiffres interviennent-ils au sein de la filière Ressources Humaines ?

Xavier Huyghe : Les équipes Ressources Humaines utilisent et produisent beaucoup de chiffres, ne serait-ce qu’en France pour élaborer le bilan social de l’entreprise. Mais ces informations sont d’abord des données de pilotage au service de la performance sociale et économique. Au-delà des contraintes légales et des nécessités de reporting, l’utilisation de données RH vise à s’assurer de l’alignement avec les objectifs stratégiques du Groupe.

Lire la suite

Le machine learning est-il équitable ?

Le machine learning est-il équitable ?

Le « Machine Learning » est entré dans l’entreprise. On en voit certes les opportunités, mais en mesure-t-on bien les enjeux sociétaux ? Peut-être est-il utile d’interroger les usages de cette nouvelle génération d’algorithmes d’apprentissage utilisant des bases géantes de données empiriques ? Existe-t-il un risque épistémologique à reproduire les biais et stéréotypes humains ? A titre d’exemple, nous interrogerons le tri de CV par le « machine Learning ». Ne véhicule-t-il pas des schémas sexistes existants ? Dit autrement, est-il équitable ?

Lire la suite

HR Analytics, le levier ultime du RH augmenté

HR Analytics, le levier ultime du RH augmenté

Le paysage des RH est aujourd’hui particulièrement contrasté en terme d’équipement en solutions RH. Un décalage subsiste entre une proportion encore importante de sociétés fonctionnant avec des tableaux Excel et d’autres ayant implémenté les atouts de l’intelligence artificielle, de la blockchain et encore d’autres technologies désormais associées aux RH.

Lire la suite

Transformation numérique, technologies, intelligence artificielle ...