D'autres articles sur le thème des technologies et de la transformation

Numéro X, numéro 10, numéro 1010 ou numéro A ?

Numéro X, numéro 10, numéro 1010 ou numéro A ?

Les chiffres romains étaient utilisés dans l’antiquité. Cette numérotation ne connaissait pas le zéro, elle repose sur sept lettres I,V,X,L,C,D et M. A l’heure actuelle, on se sert encore de ces chiffres en lettres pour inscrire les siècles et les millénaires, pour indiquer l’heure des horloges et des montres, mais aussi pour dater la construction des maisons, ou pour nommer les souverains comme Louis XIV par exemple. Cette utilisation purement esthétique n’a pas été le choix du magazine RH !

Lire la suite

Gestion des compétences : pourquoi vous ne pourrez vous passer de l'IA

Gestion des compétences : pourquoi vous ne pourrez vous passer de l'IA

« Les gens qui ne passeront pas cinq heures par semaine en ligne pour se former seront bientôt obsolètes  », Randall Stephenson, Président d’AT&T en 2016.

Une recherche empirique sur le rythme du progrès et de l’innovation montre rapidement que ce rythme est de forme exponentielle (résultat d’une succession de courbes en S) dans bien des cas. Le problème c’est que le cerveau humain sait prolonger les lignes droites mais se représente très mal une exponentielle. Il est pourtant crucial de comprendre ce dont il s’agit afin d’anticiper ce que ça implique en matière d’employabilité et de compétitivité. Essayons de comprendre cela avec l’exemple du grain de riz sur l’échiquier : un jeu d’échec compte 64 cases. En doublant simplement la quantité de riz à chaque case (1 sur la première, 2 sur la deuxième, 4 sur la troisième, etc.), on arrive à la dernière case avec une quantité de riz équivalente à 500 ans de production annuelle mondiale ! C’est ça une exponentielle. Il suffit de quelques « sauts de puces  » pour atteindre des résultats vertigineux. 

Lire la suite

Workforce planning : comment l'IA va révolutionner cette pratique

Workforce planning : comment l'IA va révolutionner cette pratique

Le Workforce Planning (WP) est étroitement imbriqué à la gestion du capital humain. Il est devenu une pratique récurrente dans les directions de R.H., étant à l’origine des décisions d’avenir. Son moteur est la planification des compétences nécessaires à l’entreprise dans un futur proche. Celle-ci est aussi abordée à travers la GPEC de manière très ‘légaliste’ ; le WP, lui est lié à la stratégie de l’entreprise. Il dessine l’entreprise future, et donc son organisation, à travers la gestion des ressources et des compétences. La démarche passera en premier lieu par la qualification des compétences de demain, puis l’adéquation avec celles d’aujour­d’hui pour définir, activer les plans de mobilité et de recrutement. 

Lire la suite

Il y a urgence à acculturer nos dirigeants d’entreprise à l’intelligence artificielle

Il y a urgence à acculturer nos dirigeants d’entreprise à l’intelligence artificielle

Par Thomas Houdaille, fondateur de Catalix, l’école de l’IA pour le business

Nous vivons une période paradoxale : il n’y a jamais eu autant de buzz au sujet de l’intelligence artificielle (IA), mais très peu de dirigeants d’entreprises françaises en ont une vision claire. Or l’IA, le Machine Learning en particulier (associé à l’IA symbolique le cas échéant), devrait être un sujet prioritaire pour la plupart des grandes (et moins grandes) entreprise car elle impacte potentiellement le développement de leur chiffre d’affaires et l’ensemble des processus, leur organisation, et car elle pose nombre de questions nécessaires sur la relation entre l’homme, l’employé et le citoyen, et les technologies digitales. D’où l’importance de sensibiliser et d’acculturer les dirigeants d’entreprise et leurs managers à l’IA 

Plusieurs études récentes sur l’impact de l’IA à l’horizon 2035 affirment que la croissance économique d’un pays ne s’évaluera plus en fonction de son capital mais en fonction de son degré́ de maturité́ en Intelligence Artificielle. D’après une étude d’Accenture, l’IA pourrait accroître de près de 38% en moyenne la rentabilité des entreprises à cette échéance ! Sans prendre ces études pour parole d’évangile, force est de constater la montée en puissance et la diversité́ des exemples d’applications de l’IA autour de nombreux usages : mieux comprendre ses clients et prédire les ventes, optimiser les opérations et processus métiers, détecter les fraudes ou pannes, transformer les produits et inventer de nouveaux modèles économiques, en lien notamment avec les objets connectés (ex véhicule autonome) … 

Dans un futur proche, l’IA modifiera la nature même du travail et des relations homme-machine. Elle prendra en charge les tâches répétitives et codifiables et bousculera les modèles traditionnels d’organisation du travail. Elle permettra d’augmenter les capacités professionnelles des collaborateurs, en les déchargeant de tâches d’analyse et en réduisant le temps menant a la prise de décision. L’IA pourrait ainsi permettre aux entreprises de devenir plus performantes, plus flexibles, et plus horizontales ; et d’offrir à ses salaries des perspectives d’évolution vers des tâches à plus forte valeur ajoutée et complémentaires à l’IA. Certaines fonctions vont probablement disparaître et l’impact sur l’emploi sera significatif, même s’il est très difficile de faire des prévisions. Raison de plus pour s’y préparer. Mais on n’en est pas encore là, et la réalité de l’IA en entreprise est très variable, en particulier en France, qui globalement accuse un retard significatif par rapport à la Chine, aux USA et au Canada. Dans l’industrie, de 15 à 20% des entreprises auraient mis en place des pôles de compétence dédiés, et commencé à déployer des solutions opérationnelles. Quelques grandes banques françaises sont déjà très avancées quand d’autres ont à peine démarré. Certains acteurs du digital et startups sont quant à elles déjà des « AI companies ».

Dans les grandes entreprises françaises, on est encore la plupart du temps dans une phase d’expérimentation, avec des projets pilotes qui ne tiennent pas toujours leurs promesses. La première raison est sans doute que les entreprises lancent beaucoup d’initiatives en parallèle au lieu de se consacrer sur quelques projets prioritaires. La seconde, qui est indirectement liée, est que le management (top et opérationnel) n’est pas assez investi sur le sujet. Il délègue bien souvent aux CDO et aux Data Scientists, par manque de culture et de vision stratégique sur le sujet.

Or les projets IA sont par la nature même de l’apprentissage automatique des projets qui nécessitent une approche « agile », beaucoup de « test and learn » et une forte association des équipes métiers aux data scientists. Au-delà de l’algorithmie (qui nécessite un vrai savoir-faire), il y a un enjeu particulier autour des process métiers travaillés, des données utilisées… et il faut souvent combiner les techniques d’analyse des données avec l’holistique et l’empirique que connaissent les gens du métier pour être capable de sortir un signal significatif.

Il est temps que les dirigeants et leurs managers se saisissent de l’IA ! Et ca n’est pas seulement un sujet de technologie, mais de culture d’entreprise et donc également de ressources humaines. Plus généralement si certains salariés sont prêts à jouer la carte de l’IA parce qu’ils en voient les bénéfices, pour d’autres, c’est l’inquiétude d’une grande déshumanisation qui règne. A l’aube d’une époque où la transformation des métiers va s’accélérer, beaucoup d’information et de formation reste à faire pour combler ce large déficit de compréhension et tordre le cou à nombre de fantasmes.

« Machine learning is a fundamental new technology that can create immense value to humankind. At the same time, it will challenge society. Not to try to understand how it works would be irresponsible ». Risto Siilasmaa, Pdt du Conseil d’Administration de Nokia, qui s’est formé au Machine Learning et a décidé de former tous les employés de son entreprise ! 

  

 

 

        

Lire la suite

Le machine learning est-il équitable ?

Le « Machine Learning » est entré dans l’entreprise. On en voit certes les opportunités, mais en mesure-t-on bien les enjeux sociétaux ? Peut-être est-il utile d’interroger les usages de cette nouvelle génération d’algorithmes d’apprentissage utilisant des bases géantes de données empiriques ? Existe-t-il un risque épistémologique à reproduire les biais et stéréotypes humains ? A titre d’exemple, nous interrogerons le tri de CV par le « machine Learning ». Ne véhicule-t-il pas des schémas sexistes existants ? Dit autrement, est-il équitable ?

J’avais reçu commande d’une étude qui devait analyser la réaction de filiales européennes d’un groupe face au effets du mouvement #MeeToo. Au-delà même des violences faites aux femmes, qui dépassait le cadre de mon analyse, j’entendais pouvoir révéler les effets sur l’égalité femmes hommes en entreprise dans ces pays. L’idée étant d’apprécier pour une même culture d’entreprise les différences culturelles « géographiques » face à un événement à résonance mondiale. 

D’un point de vue méthodologique, cette approche demandait à minima un travail déductif qui devait permettre à partir de quelques observations qualitatives qui se voudraient représentatives d’inférer des généralités qui vaudraient pour le pays, sinon pour la filiale. Evidemment, il existait l’approche complémentaire inductive, qui aurait conduit à compiler des données existantes en nombre suffisant pour induire ce qui se passe dans telle ou telle filiale. Ces deux approches classiques en sociologie, c’est-à-dire dire d’observation terrain et d’analyse de données sont généralement à mener de concert. Sauf qu’il peut exister des écarts entre leurs conclusions respectives issues, d’une part, de l’analyse de données, caractérisée par une abondance informationnelle, et d’autre part, alimentée par le prisme de l’expérience singulière et tous les biais culturels et idiosyncrasiques de l’observateur. 

« Machine » Humaine, trop humaine ?

J’envisageais notamment d’analyser l’historique du nombre de promotions de femmes depuis plusieurs années jusqu’à cette année pour effectuer les comparaisons statistiques d’usage. Je m’interrogeais alors sur l’opportunité d’avoir recours au « Machine Learning » pour mieux connaitre la population de référence et son évolution. 

D’où cette question essentielle : les algorithmes prédictifs pourraient-ils permettre de prévoir les effets induits par #MeeToo ? Cet évènement disruptif extérieur au groupe qui remettait en cause les pratiques antérieures – sexistes – de promotion – pardon de non promotions des femmes - rendait-il pertinent l’usage des algorithmes prédictifs ? L’observation du passé aurait-elle pu me donner les clefs du présent ? En d’autre terme, le « machine learning » n’est-il pas lui-même sexiste ? dit autrement n’apprend-t-il pas aussi à reproduire des schémas sexistes existants ?

Plusieurs définitions du « Machine Learning » sont disponibles dans la littérature, en voici une énoncée dans l’ouvrage collectif Big Data et Machine Learning : « ensemble d’outils statistiques ou géométriques et d’algorithmes informatiques qui permettent d’automatiser la construction d’une fonction de prédiction à partir d’un ensemble d’observations que l’on appelle l’ensemble d’apprentissage ».

Dans le processus d’apprentissage, on présuppose un paradigme de continuité c’est-à-dire que l’information du passé est significative pour donner une information sur l’avenir. On peut s’interroger sur la capacité de l’algorithme prédictif à adresser les problèmes nouveaux non survenus dans le passé et donc inconnus du « machine learning ».  

De l’art de manier les variables  

Au préalable, on devra s’interroger sur les nouvelles garanties d’utilisation que fait peser le RGPD sur les données personnelles issues par exemple des CV parfois reçus il y a quelques années à des fins de simulation. Il est entendu que le RGPD a largement focalisé sur les données personnelles et fait une quasi impasse sur les données anonymisées, laissant le champ libre aux éditeurs. En outre, il est possible de chercher à remplacer une variable absente, lacunaire ou retirée à dessein, telle que le sexe par d’autres variables « fortement explicatives ». Leur maniement devra être fait avec autant de rigueur et dans le respect du cadre légal ad hoc que la variable substituée. A titre d’illustration, une sélection qui ne serait pas fondée sur le sexe, mais qui serait fondée sur des prérequis stricts de progression de carrière dont des femmes auraient été exclues pour des raisons indépendantes de leur mérite et de leur volonté (fameux effet de plafond de verre) conduirait à les exclure à nouveau injustement (double peine). De même, une sélection qui ne serait pas fondée sur le sexe, mais sur un critère d’années d’expérience trop précis, incontestable de prime abord, pourrait conduire à exclure des femmes ayant connu un ou plusieurs congés parentaux (ou autre type d’interruption d’activité ou temps partiel). Ces mêmes exemples conduisent à sélectionner sur des critères d’âges, excluant tantôt les jeunes et tantôt les plus âgés. On le constate, si les critères de sélection apparaissent pertinents – c’est-à-dire ne retenant pas les variables de sexe et d’âge - ils peuvent in fine conduire à des exclusions qu’ils entendaient pourtant éviter.      

Oiseaux rares 

En bon DRH qui se respecte –  c’est-à-dire en non mathématicien ni informaticien – j’étais impressionné par cette nouvelle génération de machines apprenantes issues du Big Data. Dans le domaine RH, et pour rester dans la problématique d’égalité femmes hommes, les algorithmes prédictifs promettent par exemple de trier les CV à la place des recruteurs de la même façon qu’ils l’auraient fait eux-mêmes. Plus vite et sans erreur. Remplacer les personnes de l’art apparaît tentant, au moins économiquement parlant, et dans l’air du temps d’une recherche de performances et d’infaillibilité. Encore faudrait-il se prémunir des biais de genre et autres biais culturels. Encore faudrait-il que le « Machine Learning » sache, comme un bon recruteur, aller chercher le mouton à 5 pattes sous les signaux faibles ou encore avoir une approche disruptive, jusqu’ici non retenue dans l’historique des CV analysés et validés, pour dénicher les futurs oiseaux rares qui sauront conduire et incarner les Transformations. Rompre avec les mauvaises habitudes ou inventer ce qui n’existait pas :  est-ce à la portée de ces machines ?

L’équité n’est pas une option 

L’objet n’est, ici, pas d’entrer dans des considérations techniques mais utilement de rappeler que les prédictions ne mettent pas en évidence des causalités mais bien des corrélations. Et que au-delà du score lui-même, il est tout aussi important de connaitre le niveau de fiabilité (intervalle de confiance) de ce résultat. La question se pose de savoir, pour ces algorithmes présentés comme une aide à la décision, combien de fois le recruteur remettra-t-il en cause le tri de CV effectué en le confrontant à sa propre expérience et en partageant cette décision avec l’éditeur. Ou, si au contraire il se fiera exclusivement à cette sélection de CV compte tenu de son caractère présumé ou perçu d’infaillibilité. Auquel cas, il ne serait pas possible de confronter le modèle prédictif à la réalité des besoins de recrutement de l’entreprise et d’ajuster le modèle. 

Un algorithme prédictif produira toujours un résultat. Il est donc important que les utilisateurs aient, au-delà même du sens critique, un niveau suffisant de confiance dans ce résultat. En particulier sur la partie d’apprentissage « qui est la partie immergée de l’iceberg car les données peuvent changer, l’algorithme peut ne pas converger, les intervalles de confiance peuvent être trop importants pour que le résultat produit puisse être pris sans risque important d’erreur » rappelle en substance Cédric Gouy-Pailler chercheur au CEA dans l’émission la méthode scientifique de France Culture. C’est bien cette « interprétabilité », rappelle-t-il, au sens de Tim Miller (réunissant la double condition : à quel point un humain peut-il a) comprendre la cause d’une décision b) prédire de manière consistante le résultat d’un modèle) qui seule peut créer les conditions de la confiance.  

Dans cette même émission, Claire Mathieu directrice de recherche au CNRS et professeure au Collège de France, donne une bonne illustration de la difficulté d’avoir une définition de l’équité au travers d’un exemple d’algorithme prédictif de récidive de détenus aux Etats-Unis. Elle rappelle que les 3 propriétés nécessaires pour une décision juste (selon des notions d’équiprobabilités de récidive pour la population générale et par groupes ethniques de récidivistes) - c’est-à-dire pour une décision équitable du point de vue de l’origine ethnique des détenus -  ne peut pas être satisfaite par des fonctions de score. On ne doute pas qu’il existe des moyens de remédier à ces biais par la conception et l’apprentissage du modèle à partir de groupes d’entrainement et de test pertinents permettant d’évaluer la qualité prédictive du modèle. Sans doute, n’est-il pas nécessaire de rappeler qu’il serait illégal de faire appel en France à des variables ethniques fusse pour en dénoncer les effets discriminatoires. 

Boite de Pandore 

En l’espèce, si dans une base historique de CV, la proportion de femmes issues de la sélection de CV pour des postes de managers des ventes par exemple est significativement inférieure à la proportion des candidates, le modèle devrait en principe pouvoir corriger cette irrégularité sexiste et la corréler uniquement aux écarts de compétences requises. Dès lors, le choix des critères – dites variables prédictives – pour produire ces ajustements parait crucial. De la même façon, on doit pouvoir s’assurer que le « machine learning » ne produit pas d’autres discriminations prohibées par la loi. On ne doute pas également que les startups ont su remédier à ces biais et fait les arbitrages utiles. Il s’agit pour l’utilisateur, le professionnel RH ou le recruteur en l’occurrence, d’avoir connaissance de ces ajustements ou même des biais initiaux de sa base de CV acceptés / refusés. Ce serait une opportunité pour le recruteur de comprendre comment y remédier dans sa pratique, c’est-à-dire non seulement pour le tri de ses CV, mais aussi dans ses décisions finales de recrutement. On le voit, la transparence et une bonne compréhension du modèle permettraient d’apprendre plus du « Machine Learning » que par ses seules fonctions de scores, elle permettrait de révéler les biais de sa propre pratique en matière de recrutement et de pouvoir les dépasser.  

Enfin, nous l’avons dit, un algorithme produira toujours un score. Pour un algorithme donné, ce score sera variable en fonction des bases (ou ensembles) de données utilisées pour le test et l’apprentissage. Il appartiendra donc également aux professionnels RH de traiter les informations préalables qui alimenteront l’apprentissage du « Machine Learning », au regard des objectifs visés et des informations disponibles dans la base historique de données et d’être impliqués dans la constitution des groupes d’apprentissage et de test. Il faudrait pouvoir s’assurer de la cohérence et de la consistance de la base de données disponibles. En d’autres termes, s’assurer que l’apprentissage sera pertinent par rapport à ce que l’on veut en faire.  

Accompagner les Transformations

Plus largement, l’accompagnement des transformations nécessitera de bien comprendre les « changements de régime » des algorithmes et d’analyser les changements au travers de la connaissance mise à jour des biais du passé. Mieux connaitre l’historique permettra aux professionnels RH de mieux anticiper les changements. Leur participation au processus d’apprentissage du « Machine Learning » s’imposera comme une nécessité. On ne doute pas que les avancées de l’Intelligence artificielle apporteront une créativité supplémentaire. Le marché du « Machine Learning » est sans nulen t doute très prometteur, autant que les startups françaises dans ce domaine.  Le tri de CV en est un bon exemple, s’agissant en pratique de tâches répétitives déléguées à de jeunes professionnels créatrices in fine de forte valeur ajoutée pour l’entreprise. 

Transparence, loyauté et vigilance

Il ne s’agit pas ici d’ouvrir un procès en angélisme ou ignorance des utilisateurs et des professionnels RH en dernier ressort. Mais il en va de la nécessité de « prendre la main » en mesurant les succès et les échecs de la machine et de les corriger en permanence. Il faut un co-pilote dans la Machine, qui ne laisse pas l’éditeur seul mais qui implique l’utilisateur, qui devra être formé et connaitre les incidences des algorithmes. In fine, la responsabilité sociétale incombera toujours à l’utilisateur tant qu’il ne peut se prévaloir d’ignorer les limites des machines qu’il sollicite pour gérer ses ressources humaines. Il n’en serait pas nécessairement de même du point de vue de la responsabilité civile ou pénale, compte tenu de l’absence actuelle de cadre juridique spécifique et de normes, au-delà même de la CNIL. On ne doute pas que les juristes se saisiront de ce débat. On conclura par la recommandation du Conseil d’Etat – au-delà du RGPD - dans une étude numérique et droits fondamentaux qui recommande l’encadrement juridique des algorithmes en érigeant en principe la transparence, la loyauté, la vigilance pour que les décideurs publics « gardent la main ». A mon sens, un enjeu largement partagé par les entreprises, et les DRH en particulier.

Si le « Machine Learning » apprend uniquement des données dont nous le nourrissons en amont, il nous reste encore à bien comprendre toutes les incidences de son fonctionnement, pour nous en assurer le contrôle et l’efficience dans le respect de la responsabilité sociétale des utilisateurs.

Emmanuel Lebuchoux

NDLR : Ce qu' Emmannuel Lebuchoux anticipait dans cet article a trouvé confirmation la semaine dernière avec la mise à la casse de l’algorithme sexiste de recrutement d'Amazon

  

 

 

        

Transformation numérique, technologies, intelligence artificielle ...